
How to not lose a mind by paralelizing
a feedback loop?

Janis Erdmanis (GitHub: akels, Twitter: graphitewriter, janiserdmanis.org)

Feedback loops are notoriously hard to reason about and debug when parallelism is
introduced. In this poster, I will show a use case of the TaskMaster for using it to do

adaptive and parallel sampling to make your plots faster with constrained resources.

An idea worth exploring
Background: curreently I am doing a PhD in
theorethical condensed matter physics (topological
effects in multiterminal superconducting
junctions). Started using Julia since `v0.3.3` for my
Msc project to get interactivity of Python and
speed of C. Quicly got hooked up in reading cool
developments on Discourse and later also on Slack.

Can Julia do better than Python? It is a common
practice that a good craaftsman will make good
stuff with bad tool. I do not agree with such
sentiment and observed multtiple debates
whether tomatous are vegetables or fruits (OOP
talk). But the idea was cool and thus started to
think how to make Julia API for Python adaptive
package my collegues were making.

Exploring how to solve this problem in Julia was
intereseting because:

+ A very natural paralelism abstractions.
+ Channel makes for easy piping
+ Type system and mutliplt dispatch <B
+ Perfomrnace. If you hacve contrained reesource
better make susre that f(x) runs as fast as possible.

Motivation: Often when we face an
embarrassingly parallelizable problem which runs
a long time, we reach out for a simple `pmap`
command, and if we are lucky, we can run that on
the cluster with many cores. However, often it is
the case when we want to run our figure faster
with resources which are in front of us.

Another approach is to speed up the calculation
by chhosing the grid on which the function is
sampled, but that is not alwasy convininet.
Instead the grid itslef can adapt as knowldge of
evaluated points of the function comes in. Which
thus forms a feedback loop.

When paralelism to feedback loop is introduced
it produces races and thus for optimal use of
resources the result of it is stockhastic making
debuggin notoriosuly dificult. Additionally the
learning strategies can be executed on different
kind of paralizable hardware (CPU, GPU, Cluster
jobs, etc.). This is where `TaskMaster ` package
comes to save us from misery.

First let’s abstract a learning strategy
When execution is sequential one can write full execution as a single while
loop:

while !(learner.loss() < step)
 xi = ask!(learner,true)
 yi = f(xi)
 tell!(learner,(xi,yi))
End

where step is just a convergance parameter specific to a particular learner.

Paralelism on the other hand is harder due to race conditions. For simplicity
let’s assume that we have a process which takes values from tasks Channel
and evaluates puts results in a form (xi,f(xi)) in the results Channel. Then the
evaluation can be written as simple as:

unresolved = 0
while true

 if !(learner.loss() < step)

 xi = ask!(learner,true)
 put!(tasks,xi)
 unresolved += 1

 if unresolved < N
 continue
 end
 end

 if unresolved == 0
 break
 end

 yi = take!(results)
 tell!(learner,yi)
 unresolved -= 1

end

The TaskMaster itself does not implement any
learners (appart from making tests). To use
TaskMaster one subtypes `AbtractLearner` and adds
`ask!` and `tell!` methods which are expected to be
determinsitic.

using Adaptive
learner = AdaptiveLearner1D((0,1))

Which define interval (0,1) at whihch the function is
going to be sampled.

Now the learner can be used to `ask!` points.

xi = ask!(learner, si)

Where `si` contains an external data passed to the
learner, for example, some random number. For
Adaptive.jl package one just passes value si=true.

The next step is to evaluate the function and feed it
back to the learner

yi = f(xi)
tell!(learner, yi)

TaskMaster
Here `WorkMaster` sets up processes for evaluteing
`f(x)` from input to output Channel. `Loop` defines what
is to be evaluated with which learner and `evaluate!` is
actually running the loop until specified convergence
condition.

Debugging Learner?

Let's imagine a situation where you had spent hours
evaluating the function with a Learner. For some
particular reason looking at the output, the Learner
seems had misbehaved. The question then is how one
could debug that?

Through replaying the master as long as learner is
deterministic*:

hmaster = HistoryMaster(output,length(master.slaves))
hlearner = AdaptiveLearner2D([(-3,+3),(-3,+3)])
hloop = Loop(hmaster,hlearner,loop->println("Learner state $
(hloop.hlearner.state)"))
evaluate!(hloop,learner->learner.loss()<0.05)

Thus one can understand the learner by knowing what
state caused the problems.

* Adaptive learners uses random numbers and thus the replay would not work. It
would be possible if random number or it’s seed would be passed with `ask!`
method.

The idea of TaskMaster is that writing of that while loop accuratelly
counting `unresolved` tasks can be a little challenging for every time
one would like to make a figure. Additionally to use the loop one
needs to set up evaluation Task between tasks and results Channel.

using Adaptive
using TaskMaste

@everywhere f(p) = exp(-p[1]^2 - p[2]^2)

master = WorkMaster(f)
learner2d = AdaptiveLearner2D([(-3,+3),(-3,+3)])
loop = Loop(master,learner2d)
output = evaluate!(loop,learner->learner.loss()<0.05)

Conclusions and References

Thank You

Conclusions:

- Abstractions Julia offers by default almost
paralele executor part redundant (TaskMaster) in
contrast to Python (Runner module).
- The costs of using Adaptive pacakge is quite
heavy when all python dependencies gets
installed. Also it is in active development thus the
code just might break after a while.
- I showed how deterministic learners can be
replayed for debugging their state.
- Using `pmap` is easier as output of it can be
plotted and saved with less steps.

References:

janiserdmanis.org/TaskMaster.jl

github.com/python-adaptive/adaptive

Bas Nijholt and Joseph Weston and Jorn Hoofwijk
and Anton Akhmerov (2019). Adaptive: parallel
active learning of mathematical functions. Zenodo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

