
Zero knowledge proofs of shuffle with
ShuffleProofs.jl

Dr. Janis Erdmanis (GitHub: JanisErdmanis, Twitter: graphitewriter, janiserdmanis.org)

Introduction

Usual cryptography => we can trust the
other end to do the right thing

Remote electronic voting => How to combine
privacy and accountability? (“evoting problem”)

Introduction

E-voting: ironically it is hard because of efficiency

Privacy Accountability

Introduction

Introduction

* in noninteractive setting verifier is a “hash function”
 to which prover feeds responses and receives challenges

Problem

Java is a verbose language and did not appeal for me.
Porting to Julia seemed like a good idea:

However, a major downside of Julia is the lack of libraries in
public key cryptography

Leanness Modularity Worry free
compatibility

CryptoGroups

Implements:
● Elliptic curves over prime and binary fields
● Modular prime groups
● Relevant utility functions (point compression

and basis selection)
● Common cryptographic constants

Ability for type parameters to hold values
was essential in making a lean API.

Tailored for implementation of
cryptographic schemes and protocols

ElGamal basics

x2
Sender Receiver (a, b)

Public key Private key

Receiver generates a secret random
number sk (his private key) and
publishes a public key:

Sender: chooses a message m, and encrypts
it with a randomization factor r:

Receiver: uses his private key sk
to decrypt tuple (a, b):

ElGamal reencryption

x2
Sender Receiver (a, b)

Public key Private key

Middleman: chooses a randomization factor r’ and reencrypts tuple (a, b):

Receiver: uses his private key sk
to decrypt tuple (a, b):

Only receiver can tell that (a, b)
and (a’, b’) holds the same message!

Typical reencryption mixnet voting system
Counting

Voters Mix Decryptor

Setup: mA and mB votes for candidates A and B. Public key pk.

(a, b)
V1 (3, 7)
V2 (9, 3)
V3 (8, 13)

(a’, b’)
(13, 11)
(14, 13)

(7, 3)

Input Output

m
7
5
7

Why should we trust election result when Mix and Decryptor can do whatever they want?

ShuffleProofs

Honesty of the mix can be verified with secret
randomization factors, but that violates privacy

Proposition holds all inputs and outputs of the mix

ShuffleProofs: NIZK PoS

See docs to choose verifier parameters with care

Proof can be published for on a bulletin board
without any compromises on privacy

For convenience a verifier can be passed directly to shuffle returning
simulator object which contains proposition, proof and verifier

Appreciate and despair:

Current state and the future

The current state:

● Much leaner API and more accessible for tinkering
● Easy get it running for any machine
● Poor performance and security in comparison with Verificatum, lacks

features.

In the future:

● Implement Verificatum compatible proof of decryption
● Add a command line interface
● Improve performance and add docs for CryptoGroups
● Interface existing cryptographic libraries with CryptoGroups API

Go to peacefounder.org and check out PeaceFounder Github organization to learn
more

Verificatum generated PoS can be
verified with ShuffleProofs:

The end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

