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I. INTRODUCTION

Quantum pumps [2, 7] recently have been proposed for optics-like experiments as on-demand electron source, where
the properties of emitted electrons are still subject for study.
Typical optics-like experiment consists of on-demand electron source [6, 10, 12] quantum Hall edge channel and

beam-splitter and uses March-Zeinder interferometer geometry [11] to obtain information about emitted electron’s
quantum state. Since electrons on quantum Hall edge channel behaves as free particles [3] then it is reasonable to
assume that they remain coherent by the time of detection. Therefore it is possible to study the whole system from
two parts where one is electron source with quantum Hall edge channel.
Theoretical framework consists from properties of low temperature free electron gas and its excitations. These

excitation are the ones which quantum Hall edge channel delivers to the observer (read spectrometer or beam-
splitter). On quantum Hall edge channel the excited electron (further electron) is characterized with its position x
and momentum p, where both are tied with uncertainty principle ∆x∆p ≤ h̄/2, therefore electron must be represented
either with quantum state vector or with Wigner function [4]. This electron state however is made at the time of
emission giving us opportunity to modify it by modifying emission protocol where on this summary quantum pump
have been considered.

II. THE TUNNELING PROBLEM FROM QUANTUM PERSPECTIVE

Since electron before and after tunneling has the same energy, then knowing how energy changes on quantum dot
with additionally with time dependence of tunneling rate gives all what is needed to characterize excitation on Hall
edge channel.
The whole system in this case can be modeled from two parts - quantum dot and lead - where interaction is modeled

as mixing of quantum states. We are assuming that this interaction does not depend on energy of quantum dot or in
other words mixing between dot and lead states are equal. Therefore this case is modeled with Hamiltonian:

Ĥ = ϵd(t) |d⟩ ⟨d|+
∑
k

ϵk |k⟩ ⟨k|++
∑
k

[V ∗(t) |d⟩ ⟨k|+ V (t) |k⟩ ⟨d|] (1)

where |d⟩ is state of the dot, |k⟩ states of the lead, V (t) is interaction term and summation is along all possible
wave-vectors in the lead. The interaction term V (t) is given according to Fermi golden rule Γk = 2πδ(ϵk − ϵd)|V |2 as:

V (t) =

√
Γ(t)

2πρ
(2)

where ρ is energetic density of states but Γ(t) is defined according to kinetic equation for probability for electron to
be in the dot Pd as:

dPd

dt
= −Γ(t)

h̄
Pd(t) (3)

The Hamiltonian suggests that quantum state vector can be represented as:

|Ψ(t)⟩ = cd(t) |d⟩+
∑
k

ck(t) |k⟩ (4)

where cd, ck are amplitudes of the states, Since emission process is of our interest then initially we are assuming that
on quantum dot fully sits an electron or:

cd(t0) = 1 (5)

ck(t0) = 0, k = all possible wavevectors (6)
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FIG. 1: Schematics of dispersion and its linearisationa.
a Seems wrong when I am reffering ϵd(te) to energy interval.
Therefore image will be improved.

With this initial condition and time dependent Schroedinger equation one obtains the solution for lead state amplitudes
[1, 9]12:

ck(t) =
−i

h̄
√
2πρ

∫ t

t0

√
Γ(t1) exp

[
−i
h̄

∫ t1

t0

ϵd(t̃)−
i

2
Γ(t̃)dt̃

]
e−iϵk(t−t1)/h̄dt1 (7)

A. Rewriting with wave-vectors

When electron tunnels out of the dot it becomes part of Hall edge channel which is characterized with dispersion
shown in Figure 1. According to it the electron energy in the lead can be given in terms of wave-vectors, where we
for simplicity consider only linear part around some characteristic quantum dot energy ϵd(te). Referring energy and
electron momentum around that point we can do linearization:

ϵk =
dϵk
d(h̄k)

∣∣∣∣
ϵd(te)

h̄k = vF h̄k (8)

Since we can write momentum operator as p̂ = Ĥ/vF then energy state |k⟩ is also momentum state for which can
calculate amplitude after putting linearization in (7):

ck(t) =
−i

h̄
√
2πρ

∫ t

t0

√
Γ(t1) exp

[
− i

h̄

∫ t1

t0

ϵd(t̃)−
i

2
Γ(t̃)dt̃

]
e+ivF k(t1−t)dt1 (9)

B. Approximation for full emission

Let’s set initial condition t0 → −∞ but time t we are considering large enough to be certain that electron on Hall
edge channel has been fully emitted. From mathematical perspective I am assuming that integrated function in (9)
is localized for t1 and therefore can be approximated as:

ck(t)
X(t)≫1

=
−i

h̄
√
2πρ

e−ivF kt

∫ √
Γ(t1) exp

[
− i

h̄

∫ t1

t0

ϵd(t̃)−
i

2
Γ(t̃)dt̃

]
e+ivF kt1dt1 (10)

1 However both are considered with t0 = 0 instead of arbitrary initial time. In my Bachelour thesis I showed how to shift the solution,
but it is almost as long as derivation itself making me to consider of including derivation. The only misunderstunding to me is in [1]
equation [A3]!

2 We can also express it as

ck(t) = −
i

√
hρ

∫ t

t0

√
pt(t1) exp

[
−

i

h̄

∫ t1

t0

ϵd(t̃)dt̃−
i

h̄
ϵk(t− t1)

]
dt1

where pt(t) is time probability density distribution from (3) as pt(t) =
dPd
dt
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For what follows the solution is also rewritten as3:

c(k, t) =
−i

h̄
√
2πρ

∫
B(t1)e

+ivF k(t1−t)dt1 (11)

B(t) =
√
Γ(t1) exp

[
− i

h̄

∫ t1

t0

ϵd(t̃)−
1

2
X(t)

]
(12)

X(t) =
1

h̄

∫ t

−∞
Γ(t̃)dt̃ (13)

where I have emphasized that the solution of ck(t) is continuous function for wave-vectors k.

III. PROPERTIES AND DEFINITION OF WIGNER FUNCTION

The function W (x, p) which gives expectation value on phase space Ã(x, p) in the following way:

⟨Â⟩ =
∫
W (x, p)Ã(x, p)dxdp (14)

is called Wigner function. The operator Ã(x, p) however is connected with quantum mechanical analog Â with Weyl
transform:

Ã(x, p) =

∫
e−ipy/h̄ ⟨x+ y/2| Â |x− y/2⟩ dy (15)

Defined in this way the following property is valid [4]:

Tr ÂB̂ =
1

h

∫
Ã(x, p)B̃(x, p)dxdp (16)

Since expectation value for operator is also given with density operator ρ̂ as ⟨Â⟩ = Tr ρ̂Â then using property above
one obtains the formula for Wigner function from:∫

W (x, p)Ã(x, p)dxdp
(14)
= Tr ρ̂Â

(16)
=

1

h

∫
ρ̃(x, p)Ã(x, p)dxdp (17)

and from which follows:

W (x, p) =
1

h
ρ̃(x, p) =

1

h

∫
e−ipy/h̄⟨x+ y/2|ψ⟩⟨ψ|x− y/2⟩dy (18)

Two properties follows immediately from definition [4]:

px(x) =

∫
W (x, p)dp (19)

pp(p) =

∫
W (x, p)dx (20)

where px is position but pp momentum probability density. For Wigner function there is also property for momentum
shift. For example if we consider wave function e−ixkFψ(x) then the new Wigner function according to old one
becomes W (x, h̄k + h̄kF ). It gives us possibility to use shifted wave function directly to plot Wigner function. For
example if we consider free particle wave function in the box of size −L/2 ≤ x ≤ +L/2 then its shifted wave function
becomes:

ψk(x) = e−ikF x 1√
L
e+i(k+kF )x =

1√
L
e+ikx (21)

where we only consider electrons which moves away from quantum dot in the direction of x-axis (accounted with +
sign in exponent).

3 Might not be the right place. Also since in Wigner function it will appear multiplied with complex conjugate then for simplicity of
derivations one can set t0 = 0 for integral of ϵd(te)
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IV. WIGNER FUNCTION FROM THE SOLUTION OF SCHROEDINGER PICTURE

The energy states are also momentum states for free particles and by transformation can be obtained from position
basis. By putting quantum dot at x = 0 with size of system L we can define identity operator either in momentum
and position states:

1̂ =
∑
k

|k⟩ ⟨k| =
∫ +L/2

−L/2

|x⟩ ⟨x| dx (22)

where orthonormality of states as ⟨k|k′⟩ = δkk′ and ⟨x|x′⟩ = δ(x−x′) follows. Now we are considering by h̄kF shifted
wave function of momentum state |k⟩ of free particle:

⟨x|k⟩ = ψk(x) =
1√
L
e+ikx (23)

Applying identity operator on position and momentum states and using property above transformation formulas
follows:

|x⟩ = 1̂ |x⟩ =
∑
k

|k⟩ ⊗ ⟨k| |x⟩ =
∑
k

⟨k|x⟩ |k⟩ = 1√
L

∑
k

e−ikx |k⟩ (24)

|k⟩ = 1̂ |k⟩ =
∫ +L/2

−L/2

|x⟩ ⟨x| dx |k⟩ =
∫ +L/2

−L/2

⟨x|k⟩ |x⟩ dx =
1√
L

∫ +L/2

−L/2

e+ikx |x⟩ dx (25)

For checking one puts them back in the identity operator and uses that delta functions can be also expressed as:

δkk′ =
1

L

∫ +L/2

−L/2

e−i(k−k′)xdx (26)

δ(x− x′) =
1

L

∑
k

e−ik(x−x′) (27)

which are valid for k = 2π
L · integer.

A. Wide band approximation

For practical uses one usually approximates summation along momentum states |k⟩ with integration:∑
k

f(k) =
1

∆k

∑
k

f(k)∆k ≈ 1

∆k

∫
f(k)dk (28)

where ∆k is wavenumber spacing in the system. Let’s assume that our function is Kronecker delta δqq′ then putting
in the last equation it’s continuous analog (26) we obtain:

∑
q

δqq′ ≈
∫ (

1

∆qL

∫ +L/2

−L/2

e−i(q−q′)xdx

)
dq =

2π

∆qL

∫ +L/2

−L/2

e+iq′xδ(x)dx =
2π

∆qL
(29)

and knowing that left side equals to 1 for any q′ then one determines spacing between wave vectors ∆k in terms of
geometric system size L:

∆k =
2π

L
(30)

It immediately shows that no approximations is made on evaluating the sum with integral when length of the system
becomes infinite long or L→ +∞.
It is also possible to estimate energetic density of states or ρ = 1/∆ϵk in terms of L. By differencing (8) to

∆ϵk = vF h̄∆k and using (30) we can express density of energy states as:

ρ =
1

∆ϵk
=

1

vF h̄∆k
=

L

vFh
(31)
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B. Wigner function from state amplitudes

The wave function from state vector (4) is obtainable as scalar product with position state |x⟩:

ψ(x) = ⟨x|Ψ(t)⟩ =
∑
k

ck(t)⟨x|k⟩ =
1√
L

∑
k

ck(t)e
+ikx (32)

which numerically can be computed as matrix multiplication with DFT matrix. Considering the limit L → ∞ and
using (28) we can express the wave function as integral:

ψ(x) =
1

∆k
√
L

∫
ck(t)e

+ikxdk =

√
L

2π

∫
ck(t)e

+ikxdk (33)

Putting it in definition of Wigner function (18) one expresses it from momentum states:

W t(x, h̄k) =
1

h

∫
e−iky⟨x+ y/2|ψ⟩⟨ψ|x− y/2⟩dy

=
L

4π2h

∫
e−ikye+iq(x+y/2)c(q, t)e−iq′(x−y/2)c∗(q′, t)dydq′dq

=
L

4π2h

∫
c(q, t)c∗(q′, t)e−iy(k− q+q′

2 )e+ix(q−q′)dydq′dq

=
L

4π2h

∫
c(ξ1 + ξ2/2, t)c

∗(ξ1 − ξ2/2, t)e
−iy(k−ξ1)e+ixξ2dydξ1dξ2

=
L

2πh

∫
c(ξ1 + ξ2/2, t)c

∗(ξ1 − ξ2/2, t)δ(k − ξ1)e
+ixξ2dξ1dξ2

=
L

2πh

∫
c(k + ξ2/2, t)c

∗(k − ξ2/2, t)e
+ixξ2dξ2

(34)

V. TIME DEPENDANT WIGNER FUNCTION

In this section we are going to look how the Wigner function looks when the solution (9)with t0 → −∞ have been
put in previous result. For simplicity one works with non-dimensionless quantities (since vF is not precisely known)
to which we can transform Wigner function as distribution in form:

W t(x, h̄k)
def
=

1

h̄
W̄ t/τ

(
x

vF τ
, vF τk

)
(35)

where I have introduced τ as free parameter to characterize the scale of time which will be convenient when emission
protocol will be substituted. From chosen transformation above the non-dimensionality follows:

x→ vF τx (36)

t→ τt (37)

k → k/vF τ (38)

with which we can express Wigner function above:

W̄ t(x, k) = h̄W τt(vF τx,
h̄

vF τ
k) (39)

Now using (34) the transformed Wigner function is given as:

W̄ t(x, k) =
ρh̄

2πτ

∫
c(
k + ξ2/2

vF τ
, τt)c∗(

k − ξ2/2

vF τ
, τt)e+ikξ2dξ2 (40)

for convenience we need to express c(k, t) from dimensionless quantities:

c

(
k

vF τ
, τt

)
= −i

√
τ

2πρh̄
e−ikt

∫ t

−∞

√
τ

h̄
Γ(t) exp

[
− i

h̄

∫ t1

t0

ϵd(t̃)dt̃−
1

2h̄

∫ t1

−∞
Γ(t̃)dt̃

]
e+ikt1dt1 (41)
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Putting last two expressions together the Wigner function is expressed as:

W̄ t(x, k) =
1

4π2

∫
dξ2

∫ t

−∞
dt1

∫ t

−∞
dt2

× e−iξ2(t−x− t1+t2
2 )

√
τ

h̄
Γ(t1)

√
τ

h̄
Γ(t2) exp

[
− i

h̄

∫ t1

t2

ϵd(t̃)dt̃−
1

2h̄

∫ t1

∞
Γ(t̃)dt̃− 1

2h̄

∫ t2

∞
Γ(t̃)dt̃

]
e−ik(t2−t1) (42)

For practical computation of the Wigner function one separates the evaluation in following way4:

ϵ̄d(t) =
τ

h̄
ϵd(τt) (43)

Γ̄(t) =
τ

h̄
Γ(τt) (44)

γ(t) =
√
Γ̄(t) exp

[
−i
∫ t

0

ϵ̄d(t̃)dt̃−
1

2

∫ t

−∞
Γ̄(t̃)dt̃

]
(45)

β̄(k, t) =

∫ t

−∞
γ(t1)e

+ikt1dt1 (46)

W̄ t(x, k) =
1

4π2

∫
e−iξ2(t−x)β̄(k + ξ2/2, t)β̄

∗(k − ξ2/2, t)dξ2 (47)

A. Momentum probability distribution

Using the property (20) it is possible from Wigner function obtain the momentum distribution which in introduced
dimensionless units is:

pk(k) =

∫
W̄ (x, k)dx =

1

2π
|β̄(k, t)|2 =

1

2π

∣∣∣∣∫ t

−∞

√
Γ̄(t1) exp

[
−i
∫ t1

0

ϵ̄d(t̃)dt̃−
1

2

∫ t1

−∞
Γ̄(t̃)dt̃

]
dt1

∣∣∣∣2 (48)

B. Position probability distribution

Similarly using property (19) the position probability distribution in dimensionless units is obtained:

ptx(x) =

∫
W̄ t(x, k)dk

=
1

4π2

∫ t

−∞
dt1

∫ t

−∞
dt2

∫
dξ2

∫
dke−ik(t2−t1)e−iξ2(t−x− t1+t2

2 )γ(t1)γ
∗(t2)

=
1

4π2

∫ t

−∞
dζ2

∫ +2t(t−ζ2)

−2(t−ζ2)

dζ1

∫
dξ2

∫
dke−ikζ1e−iξ2(t−x−ζ2)γ(ζ2 − ζ1/2)γ

∗(ζ2 + ζ1/2)

=
1

2π

∫ t

−∞
dζ2

∫ +2(t−ζ2)

−2(t−ζ2)

dζ1

∫
dξ2δ(ζ1)e

−iξ2(t−x−ζ2)γ(ζ2 − ζ1/2)γ
∗(ζ2 − ζ1/2)

=

∫ t

−∞
dζ2δ(t− x− ζ2)γ(ζ2)γ

∗(ζ2)

= Θ(x)γ(t− x)γ∗(t− x)

(49)

Therefore the position probability distribution is:

ptx(x) = Θ(x)Γ̄(t− x) exp

[
−
∫ t−x

−∞
Γ̄(t̃)dt̃

]
(50)

4 The 0 is arbitrary choice for γ(t) due to multiplicaction with complex conjugate in the expression of Wigner functiom.
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We can check that it is normalized, by comparing cumulative probability for electron to be on the lead:

Plead(t) =

∫
ptx(x)dx =

∫ +∞

0

Γ̄(x− t) exp

[
−
∫ x−t

−∞
Γ̄(t̃)dt̃

]
dx =

∫ t

−∞
Γ̄(t′) exp

[
−
∫ t′

−∞
Γ̄(t̃)dt̃

]
dt′ (51)

From the form of position distribution one can see that for some region it is invariant for Galilean transformation.
Also the sharpness with Heaviside Theta function is present which comes from Wide band approximations:

• Wave-vectors span −∞ < k < +∞ therefore in the third line of (49) Dirac delta can be produced

• Interaction term V (t) in (1) is independent of energy in the dot

• The density of states in the lead ρ is independent of state energy

VI. ASYMPTOTICS OF WIGNER FUNCTION AS t → ∞

In the limit of large t the amplitudes for state vectors become periodic (10) which makes the wave function (32)
invariant to Galilean transformation and therefore also the Wigner function. Since the Galilean invariance Wigner
function at one instant gives all information need to characterize emitted electron.
Let’s assume that at position xO there are observer. Then accounting the time which is needed for electron to came

from quantum dot to the observer as xO/vF and making use of p = ϵk/vF one can define Wigner function on time
and energy axes in a way:

Wb(t, ϵk)
def
= W xO/vF+t(xO, ϵk/vF ) (52)

Since Wigner function asymptotically becomes invariant against Galilean transformation then the right side of equation
above becomes invariant against position of observer and we can also refer it to one snapshot:

Wb(t, ϵk) = lim
xO→+∞

W xO/vF (xO − vF t, ϵk/vF ) (53)

which allows us to calculate it.

A. Calculation of it in the asymptotic case

Putting our observer far away of quantum dot or xO → ∞ we can calculate asymptotics of Wigner function by
using (10) and (53):

Wb(t, ϵk) = lim
xO→+∞

W xO/vF (xO − vF t, ϵk/vF )

=
L

2πh

∫
c(ϵk/vF h̄+ ξ2/2, xO/vF )c

∗(ϵk/vF h̄− ξ2/2, xO/vF )e
+i(xO−vF t)ξ2dξ2

=
ρhvF
2πh

1

2πh̄2ρ

∫
B(t1)e

+ivF (
ϵk

vF h̄+
ξ2
2 )(t1−

xO
vF

)
B∗(t2)e

−ivF (
ϵk

vF h̄+
ξ2
2 )(t2−

xO
vF

)
dt1dt2dξ2

ξ2→ξ2/vF
=

1

h2

∫
B(t1)B

∗(t2)e
−iϵk(t2−t1)/h̄e−iξ2(t− ξ1+ξ2

2 )dt1dt2dξ2

=
1

h2

∫
B(ζ1 − ζ2/2)B

∗(ζ1 + ζ2/2)e
−iϵkζ2/h̄e−iξ2(t−ζ1)dζ1dζ2dξ2

=
2π

h2

∫
B(ζ1 − ζ2/2)B

∗(ζ1 + ζ2/2)e
−iϵkζ2/h̄δ(t− ζ1)dζ1dζ2

=
1

2πh̄2

∫
B(t− ζ2/2)B

∗(t+ ζ2/2)e
−iϵkζ2/h̄dζ2

(54)

And putting back B(t) from (13) we obtain Wigner function expressed from emission protocol:

Wb(t, ϵk) =
1

2πh̄2

∫
e−iϵkT/h̄

√
Γ(t− T/2)Γ(t+ T/2)

× exp

[
− 1

2h̄

∫ t−T/2

−∞
Γ(t̃)dt̃− 1

2h̄

∫ t+T/2

−∞
Γ(t̃)dt̃+

i

h̄

∫ t+T/2

t−T/2

ϵd(t̃)dt̃

]
dT (55)
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where one sees that integral basically is Fourier transform which helps with numerical approximations.

B. Probability distributions

From the expression (55) one can also obtain time distribution at which electron enters in the observer5:

pt(t) =

∫
Wb(t, ϵk)dϵk =

1

h̄
|B(t)|2 =

Γ(t)

h̄
exp

[
− 1

h̄

∫ t

−∞
Γ(t̃)dt̃

]
(56)

which is also the distribution which one obtains after solving kinetic equation (3), therefore the Wigner function also
tels us probability when it has tunneled from the dot. Also energy distribution by applying (20) and using (8) can
be obtained similarly:

pϵ(ϵk) =

∫
Wb(t, ϵk)dt (57)

VII. SPECIAL CASES

No clue where to put it6:

Γ = Γ0e
−(Eb−ϵd)/∆b (58)

A. Instantaneous rise of tunneling barrier

First case we are going to consider instantaneous rise of tunneling barrier [5] which as emission protocol can be
given:

Γ(t) = Γ0Θ(t) (59)

ϵd(t) = ϵ−d (t)Θ(−t) + ϵ+d Θ(t) (60)

Since electron does not tunnel for times t < 0 then ϵ−d (t) does not contribute to the quantum state in the lead. Also

we will consider energy reference frame at which ϵ+d = 0 therefore considered emission protocol is simplified to:

Γ(t) = Γ0Θ(t) (61)

ϵd(t) = 0 (62)

Before we are putting it to the Wigner function we will express B(t) from (13)

B(t) = Θ(t)
√
Γ0 exp

[
− 1

2h̄

∫ t

−∞
Γ0Θ(t)dt

]
= Θ(t)

√
Γ0 exp

[
−Γ0t

2h̄

]
(63)

and putting it to the Wigner function (54) we obtain:

Wb(t, ϵk) =
Γ0

2πh̄2

∫
Θ(t− ξ2/2) exp

[
−Γ0

2h̄
(t− ξ2)

]
Θ(t+ ξ2/2) exp

[
−Γ0

2h̄
(t+ ξ2)

]
e−iϵkξ2/h̄dξ2

=
Γ0

2πh̄
e−Γ0t/h̄Θ(t)

∫ +2t

−2t

e−iϵkξ2/h̄dξ2 =
1

h

2Θ(t)e−Γ0t/h̄ sin(2tϵk/h̄)

ϵk/Γ0
(64)

It is apparent that we can slice out dimensionless part of Wigner function W̄b as:

Wb(t, ϵk) =
1

h
W̄b(Γ0t/h̄, (ϵk − ϵd)/Γ0) (65)

5 We can observe it either in animation or in (50)
6 It can be looked as generelasation of [7]
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which from (64) is expressed as:

W̄b(t, ϵk) =
2

ϵk
Θ(t)e−t sin(2ϵkt) (66)

The normalization to non-dimensionless variables t, ϵk also holds as
∫
W̄b(t, ϵk)dtdϵk = 1 making it easily readable

as quasi-probability distribution (For now old notation for all plots holds which has for 2π larger non-dimensional
Wigner function values). By using (56) and (57) the Wigner function above is shown in Figure 2 with corresponding
time and energy probability distributions.

B. Linear rise of tunneling barrier

Another case of interest is when the tunneling barrier is raised linearly [7] giving us emission protocol:

Γ(t) =
h̄

τ
e(t−te)/τ (67)

ϵd(t) = ϵd(te) +
∆ptb

τ
(t− te) (68)

Choosing the frames of reference for time and energy where te = 0 and ϵd(te) = 0 we can consider simplified emission
protocol as:

Γ(t) =
h̄

τ
et/τ (69)

ϵd(t) =
∆ptb

τ
t (70)

As in last section we start with expressing B(t) from (13):

B(t) =

√
h̄

τ
exp

[
t

2τ
− i

∆ptb

τ h̄
t2 − 1

2
et/τ

]
(71)

which we put in the Wigner function (55) obtaining:

Wb(t, ϵk) =
1

2πh̄2
h̄

τ

∫
exp

[
t− ξ2/2

2τ
+ i

∆ptb

τ h̄
(t− ξ2/2)

2 − 1

2
e(t−ξ2/2)/τ

]
× exp

[
t+ ξ2/2

2τ
+ i

∆ptb

τ h̄
(t+ ξ2/2)

2 − 1

2
e(t+ξ2/2)/τ

]
e−iξ2ϵk/h̄dξ2

=
1

2πh̄τ

∫
exp

[
t

τ
+ i

∆ptb

h̄τ
tξ2 − et/τ cosh(ξ2/2τ)

]
e−iξ2ϵk/h̄dξ2 (72)

We are going to consider dimensionless part of Wigner function W̄b(t, ϵk)

Wb(t, ϵk) =
1

h
W̄b(

t− te
τ

,
τ

h̄
(ϵk − ϵd(te))) (73)

for which also normalization remains. Expressing it from (72) one obtains:

W̄b(t, ϵk) =

∫
exp

[
t+ i

∆ptbτ

h̄
tξ2 − et cosh(ξ2/2)

]
e−iξ2ϵkdξ2 (74)

Computed with adaptive Gaussian quadrature it is shown with time and energy probability distributions in Figure 3,
where the effect of ∆ptb have been analyzed.

C. Linear rise with harmonical modulation of tunneling barrier

And finally we consider the case with harmonical modulation of tunneling barriers when energy at the quantum dot
remains constant which recently have became possible experimentally [2]. For this case emission protocol is given:

ϵd(t) = ϵd(te) (75)

Γ(t) =
h̄

τ
exp

[
t− te
τ

+AΓ sin

(
2π
t− te
τ0

+ ϕ0

)]
(76)
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Choosing the frames of reference for time and energy where ϵd(te) = 0 and te = 0 we obtain simplified emission
protocol as:

ϵd(t) = 0 (77)

Γ(t) =
h̄

τ
exp

[
t

τ
+AΓ sin

(
2π

t

τ0
+ ϕ0

)]
(78)

Since this problem is more complicated as previous ones some integrals can’t be evaluated analytically. One of
them is X(t):

X(t) =
1

h̄

∫ t

−∞
Γ(t̃)dt̃ =

1

τ

∫ t

−∞
exp

[
t̃

τ
+AΓ sin

(
2π

t̃

τ0
+ ϕ0

)]
dt̃ (79)

which is evaluated numerically. Putting it and emission protocol in (13) we again express B(t):

B(t) =

√
h̄

τ
exp

[
t

2τ
+
AΓ

2
sin(2π

t

τ0
+ ϕ0)−

1

2
X(t)

]
(80)

By putting it in (54) we obtain Wigner function:

Wb(t, ϵk) =

∫
e−iϵkT/h̄ exp

[
t− T/2

2τ
+
AΓ

2
sin

(
2π
t− T/2

τ0
+ ϕ0

)
− 1

2
X(t− T/2)

]
× exp

[
t+ T/2

2τ
+
AΓ

2
sin

(
2π
t+ T/2

τ0
+ ϕ0

)
− 1

2
X(t+ T/2)

]
dT

=
1

τh

∫
e−iϵkT/h̄ exp

[
t

τ
+AΓ sin(2πt/τ0 + ϕ0) cos(πT/τ0)−

1

2
(X(t− T/2) +X(t+ T/2))

]
dT (81)

We are going to consider dimensionless part of Wigner function and X(t) as follows:

Wb(t, ϵk) =
1

h
W̄b((t− te)/τ, (ϵk − ϵd(te))τ/h̄) (82)

X(t) = X̄(t/τ) (83)

By using (79) and (81) one expresses dimensionless part of Wigner function:

X̄(t) =

∫ t

−∞
exp

[
t̃+AΓ sin(2π

τ

τ0
t̃+ ϕ0)

]
dt̃ (84)

W̄b(t, ϵk) =

∫
e−iϵkT exp

[
t+AΓ sin(2π

τ

τ0
t+ ϕ0) cos(πTτ/τ0)−

1

2

(
X̄(t− T/2) + X̄(t+ T/2)

)]
dT (85)

where X̄(t) is evaluated separately. By observing localization of integrated function for T I evaluated it with trape-
zoidal rule with spacing much smaller than period of harmonic modulation 2τ0/τ . The computed Wigner function
with its time and energy distributions are shown in Figure 4 where qualitative analysis of modulation parameters
have been made.

D. Analysis of energy spectrum

Electron according to (56) is localized in time allowing us to estimate energy probability distribution numerically
from (57). Also time probability distribution has been obtained numerically from left side of (56) and compared with
result at the right shown in Figure 7 making us more confident about numerical convergence of the drawn Wigner
function and as follows about energy probability distribution.
Firstly I was considering the effect of energy changes at the time of emission for which corresponding Wigner

function can be seen in Figure 3 but energy distributions at the left of Figure 5. One sees that as quantum dot is
raised faster electron in the lead becomes more spread. Also skewness of distribution becomes present. To analyse
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spreadness of electron due to ∆ptb for each Wigner function the dispersion for both time and energy spectrum was
calculated in usual fashion:

∆t =
√
⟨(t− ⟨t⟩)2⟩ (86)

∆ϵk =
√
⟨(ϵk − ⟨ϵk⟩)2⟩ (87)

and then product was plotted shown in Figure 6. One observes it is always larger than theoretical minimum h̄/2 due
to uncertainty relations. Also we observe parabolic rise for small ∆ptb which becomes linear as ∆ptb becomes large.
After analyzing influence of ∆ptb I considered the effect of harmonical modulation of tunneling barriers in a way

that energy of quantum dot remains constant. First thing one notices in Figure 4 is the periodic structure both in
energy and time axis directions. Here we will only consider energy probability distribution since other one with kinetic
equation (3) is is already analyzed in great detail [8].
Harmonic modulation (76) introduces two free parameters amplitude AΓ and its frequency 2π/τ0 which were

analyzed by setting one to constant shown in Figure 5. For constant frequency increase for amplitude results in
production of Floquat sidebands and reduction for central maximum. Making at this point amplitude constant we
see that the change of modulation frequency directly corresponds to the spread of the sidebands.

E. Notes on numerical approximations

The first case was solved analytically and therefore no numerical approximations was made. In the second case
however numerical integration with adaptive Gaussian method had been used where as convergence condition was
used estimated relative error about 0.1%. The integrator also was checked on the first case where no differences
(visual) was observed.
In the third case however difficulties with oscillatory integrals rose. At the first try again the adaptive Gaussian

method was used however it took computation time about hours for grid of size 100×100 to reach convergence making
me to use other ways to numerically approximate integration. At first I observed that integrated function is localised
which becomes more apparent if we rewrite Wigner function (55) as:

pt(t) = Γ(t)e−
1
h̄

∫ t
−∞ Γ(t̃)dt̃ (88)

Wb(t, ϵk) =
1

h

∫ √
pt(t− T/2)pt(t+ T/2) exp

[
− i

h̄

∫ t+T/2

t−T/2

ϵd(t̃)dt̃−
i

h̄
T ϵk

]
dT (89)

where pt(t) is time probability density distribution. The pt(t) from one hand is normalized to unity
∫
pt(t)dt = 1 but

from other its values are pt(t) ≥ 0 from which comes it must also be localized7 Let’s consider ideal localisation such
that pt(t) has nonzero values only in region −a/2 < t < a/2. This would allow to obtainWigner function (without
approximations) by integration in finite region:

Wb(t, ϵk) =
1

h

∫ +a

−a

√
pt(t− T/2)pt(t+ T/2) exp

[
− i

h̄

∫ t+T/2

t−T/2

ϵd(t̃)dt̃−
i

h̄
T ϵk

]
dT (90)

In practical cases we approximate pt(t) as being localised in region −a/2 < t < +a/2 ifit integrated in this region

as PNorm =
∫ +a/2

−a/2
pt(t̃)dt̃ gives normalisation close to 1. One can show that upper bound of error introduced due to

localisation can be given:

∆Wb(t, ϵk) ≤
2

h
(1− PNorm) (91)

For evaluating the integral for finite region I used trapezodial rule where step size ∆T was choosen to take in acount
the harmonic modulation period τ0/τ . Nummerically both effects of approximation are shown in Figure 7.

VIII. PLOTS

7 I can’t imagine counter example. Nevertheless pt(t) analytical expression for harmonical modulation was clearly localized.
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FIG. 2: Wigner function for instantaneous rise of
tunneling barrier (66). The time and energy probability
distributions obtained with assumption of localization
in region drawn is shown with black solid lines. The

comparison has been made for time probability
distribution which is obtained analytically with (56)
shown with red line, where one sees the effect of not
using region large enough of drawing it in which the
normalization is

∫
region

Wb(t, ϵk)dtdϵk = 0.93. Further

all numerical calculations for time and energy
probability distributions are done with normalization at

least 0.99.
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FIG. 3: Wigner function for linear rise of tunneling barriers (72). At the top left is shown wave packet when energy
of quantum dot does not changes. At the right the limit ∆ptb → +∞ with changed energy scale to ∆ptb is drawn. It

shows that energy distribution becomes the reflection of time probability distribution since electron’s energy
dispersion becomes much smaller than energy changes introduced with ∆ptb. Since both of these seemed quite

different then I have drawn them as progression of ∆ptb at the bottom.
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FIG. 4: Wigner function for harmonic rise of tunneling barriers (85). At the top left I have shown the correspondence
with case where energy of quantum dot remains constant considered in Figure 3. Setting modulation phase ϕ0 = 0
the remaining two modulation parameters amplitude AΓ and frequency τ/τ0 was changed. It can be seen that there

are periodic structure in both time and energy axes directions where the latter one is called Floquet sidebands.
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FIG. 7: At the top we see direct comparison with time probability distribution obtained from Wigner function with
parameters AΓ = 2, τ/τ0 = 2 numerically by applying property (56) and also analytically from kinetic equation (3)

which was taken from [8]. It shows fast convergence as spacing of T becomes smaller than 2τ0/τ at numerical
evaluation of integral (85) with trapezoidal rule. The asumption of localisation for integration variable T however
does not show signs in time probability distribution (as expected), while in energy probability distribution we see

that localisation parameter a must be choosen with respect to normalization PNorm =
∫ +a/2

−a/2
pt(t)dt.
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