
PeaceFounder: EVoting by
Pseudonym Braiding

Dr. Janis Erdmanis

janiserdmanis@protonmail.ch
Braid Proof
Braiding is a cryptographic scheme that shuffles input pseudonyms yi = gxi and exponenti-

ates themwith a secret factor s, resulting in output pseudonyms y′i = (gxi)s = (gs)xi = hxi

on a new relative generator h = gs. Private key owners xi can use the relative generator

h to issue cryptographic signatures with the new pseudonyms without being linked to the

input pseudonyms. To ensure integrity, braiding is supported with zero-knowledge proof, rep-

resented as a knot in the image below.

ZKP

The braid proof is constructed from zero-knowledge proof of shuffle and proof of decryption.

Let’s consider a set of members’ pseudonyms {yi} as elements from a cryptographic group

yi ∈ G on a relative generator g ∈ G. The braider computes a set of output pseudonyms

with the following steps:

1. Generates a secret exponentiation factor s

2. Computes a new relative generator h← gs

3. Calculates ElGamal reencryption shuffle on the pseudonym set as

{(ai, bi)} ← Shuffleg({(h, yi)})
4. Decrypts ci ← bsi

5. Computes the resulting pseudonyms as y′i = ci/ai

Step 3 is supplemented with a zero-knowledge proof of shuffle, whereas steps 2 and 4 with a

proof of decryption. These proofs form a braid proof represented as a knot in the picture.

This procedure was first introduced in the work of Haeini & Spycher. Here, a slight variation of

it is shown, which streamlines implementation as it avoids the identity element. A Verificatum-

compatible proof of shuffle for step 3 and a custom implementation for proof of decryption in

steps 2 and 4 are used, both implemented in Julia and available in the ShuffleProofs.jl pack-

age.

History Tree
A history tree was proposed by Crosby & Wallach that enables ledger auditing without the

need for complete replication. By committing to the root of this tree, the bulletin board can

be held accountable for the integrity and immutability of the records.

◦ Inclusion Proof: History trees provide efficient backtracking hash chain proofs of any

record’s inclusion with respect to the current tree root commit. Clients get inclusion

proofs along with records to verify their authenticity.

◦ Consistency Proof: This proof safeguards ledger immutability over time. It proves that a

current bulletin board commit retains all records from its previous commit, with new

records appended. This proof is efficient; thus, multiple clients with unpredictable queries

can ensure ledger’s immutability.

Buletin Board

Index Type

1
2-5
6-7
8

Tree Root and State Commit

Deme Record
Member Certificate
Braid Record
Proposal Record

◦ Deme UUID
◦ Cryptographic Parameters
◦ Roster: Registrar, Proposer,
 BraidChain, BallotBox

BraidChain
Ledger

TimeStamp

Tree Root and State Commit

◦ Proposal
◦ Members' Pseudonym Set

BallotBox
Ledger

Index H(Vote) Vote
Public On Hold

◦ The bulletin board is split into BraidChain and BallotBox ledgers.

◦ For a BraidChain record to be included, it needs to be well formed and consistent with

the current ledger state.

◦ A proposal record contains an anchor to the BraidChain ledger’s state, which sets a

relative generator.

◦ A BallotBox ledger is initialised with a proposal and corresponding members’ pseudonym

set, which is set by the anchor index in the proposal.

Vote Commit
Index

Consistency
Proof

Pseudonymous Signature

◦ Proposal Hash
◦ Ballot Selection
◦ Sequence Number

Vote

Inclusion Proof

◦ Vote Hash
◦ TimeStamp
◦ Cast Index

Receipt

Receipt

◦ Every vote signed by a valid pseudonym and associated with a valid proposal hash gets

recorded in the BallotBox ledger, even if it is superseded or malformed. Upon recording,

a receipt containing an inclusion proof is returned; if the same vote is already recorded,

a receipt for it is returned instead.

◦ A voter keeps a consistency-proof chain and conducts incremental follow-up queries

until votes are finalized. This ensures their vote’s inclusion and as well votes made by

others.

◦ The BallotBox ledger publicly displays vote hashes for integrity while concealing actual

votes for fairness. This can be extended as a coercion/bribery resistance measure as,

during this period, the system is receipt-free.

◦ A timestamp ensures that malware cannot show a receipt linked to someone else’s vote.

Meanwhile, a cast index helps locate the specific vote on the ledger.

Ballot Diversity & Inovation
◦ Diverse Ballots: As votes are in a plaintext signed by a pseudonym, it is trivial

to support a diverse set of ballot types, including cardinal, budget planning

and preferential ballots. It can also support internal whistleblowing.

◦ Fluid Voting: Pseudonymity enables fluid voting, letting voters revise their

decisions within set periods during a representative term, bridging the gap

between representative and direct democracy.

◦ Ballot Sharding: Long ballots can be divided into smaller shards and

distributed among members’ pseudonyms in a lottery. This elevates the

impact of individual voters’ choices, reduces the decision fatigue of a

large ballot, and thus addresses the voting paradox.

Centralised Responsability
◦ Built without a trusted quorum assumption, avoids threshold decryption

ceremony and any trusted setup phase.

◦ Braiding operates on a transactional basis, making it suitable for a market.

Once a braid is computed, returned and verified, there’s no lingering trust

assumption, allowing untrusted third parties from anywhere in the world to

engage in anonymization.

◦ Leverages the power of voter devices to guarantee bulletin board record

immutability with history tree consistency proofs. This oversight grows with

member count and eliminates the need for bulletin board replication,

offering both efficiency and reliability.

◦ Any misconduct results in publishable cryptographic evidence identifying

responsible party, whether it’s the registrar, proposer, bulletin board, or

braider authorities.

◦ The system can be easily set up and managed by just one person, or can

be delegated for its deployment and maintenance to a third party.

E2E Verifiable with Coercion/Bribery Resistance

◦ Resistance to coercion and bribery hinges on the assumption that voters

would not commit to distant positive/negative outcomes allowing them to

freely revote or tag vote as coerced. We shall call this a moratorium period,

within which there is a receipt-freeness but no public verifiability.

Elle
cti

on S
tar

ts

Ta
lly

 A
nnounce

d

Votes
 P

ublis
hed

Fairness

Receipt Freeness Public Verifiability

◦ The system is designed to resist malware and spyware. Voters can check if

their vote was discarded or altered by comparing their receipt with the

bulletin board’s records. Additionally, the device alerts the voter if a vote is

cast outside the device, which can be cross-verified with the bulletin

board. Note that the aim is to enable voters to detect malware

interference; it’s not intended as a proof to be shown to a third party.

Responsabilities & Interactions
◦ Modular design and a public bulletin board allow seamless integration, facilitating

custom dashboards on organisational websites.

◦ Custom registrars enable diverse identity authentication methods and third-party audit

provisions.

◦ Custom proposers can adapt to varied organisational proposal submission procedures.

Auditor

Checks tally, verifies vote
eligibility and unlinkability and
ensures one vote per member

PeaceFounder
Microservice
[JSON/HTTP]

Maintains integrity and

accessability of the deme's
buletin board

Registrar

Registers new members and
maintains a registration roll

Proposer

Manages proposal drafting and
publishing

SMTP

Default communication channel
with the members

Identity Provider*

A trusted third party which
can certify authenticity of
the member (aka ID card

issuer).

TOR*

Provides IP anonimity when
casting votes and following up

buletin board consistency

DRAND*

Provides verifiably random
numbers that can be used to

shard long ballots

Member

Enrolls in a deme, casts votes,
and ensures immutability of
the bulletin board records

Guardian

Configures and maintains
PeaceFounder service

Braider

Provides unlinkability for
members to their votes

Legend
person
system
container
external person
external system
external container

* The external services are provided for contextual illustration and are not currently integrated

◦ Auditors uphold the integrity of both BraidChain and BallotBox ledgers, ensuring

accurate vote tallying and verifying voter eligibility. Additionally, they enhance bulletin

board availability by relaying votes and document suspicious activities, and can relay

unrecordable votes or blame proofs between themselves to reach a consensus, paving

the way for judicial actions.

◦ Untrusted third parties can host braiders, ensuring unlinkability for voters. Self-braiding

can be useful for sanitising public evidence. Deme-based braiding exchange ensures

vote privacy against dishonest organisers.

◦ To ensure voters’ untraceability, votes are routed via the TOR service. Public IPs or

domain names are recorded on the bulletin board to prevent segregation-type attacks.

PeaceFounder Microservice
[System]

BuletIn Board

Member

Individual's trusted device
for registering, casting votes
and upholding bulletin board

integrity

LogBook
[written record / memory]

Member's store for receipts

for detecting presence of
malware on the device

Registrar

Responsable for member
registration process and their

autheticity

Proposer

Manages a proposal drafting
process and certifies them

Braider

Secretly exponentiates the
new relative generator and
shuffled pseudonyms; gives

ZKP for honesty

Guardian

Certifies a Deme record
including cryptography, party
roster, and external braider

choice.

BraidChain Recorder

Validates and records
transactions in the braidchain

ledger

BallotBox Collector

Collects and records valid
votes in the ballotbox ledger

BraidChain LedgerBallotBox Ledgers

HTTP Facade
[HTML]

Secondary verification channel

to ensure votes are cast as
intended

Auditor

Checks/monitors integrity of
the buletin board and offers a
proxy for unrecordable votes

Provides proposals and
coresponding member pseudonym

sets

Writes and commits valid
transactions

Writes and commits valid votes

Sends a certified Deme setup
[JSON/HTTP]

Sends a Member certificate with
a pseuodnym at the current

relative generator
[JSON/HTTP]

Sends a certified Braid
computation

[JSON/HTTP]

Sends a certified Proposal
[JSON/HTTP]

Provides a relative generator and
a tree root

[JSON/HTTP]

Provides a list of proposals with
inclusion proofs
[JSON/HTTP]

Provides a tree consistency
proofs

[JSON/HTTP/TOR]

Provides cast receipts
[Display]

Lists all cast receipts and ballots
post-voting

[HTML]

Provides registration service (see
protocol)

[HTML/JSON/QR/HTTP(S)]

Provides access to all records on
buletin board
[JSON/HTTP]

Sends buletin board blame proofs
and forwards undeliverable votes

[HTTP/JSON/TOR]

Sends valid unrecorded votes
[HTTP/JSON]

Sends votes
[HTTP/JSON/TOR]

Legend
person
system
container
external person
external system
external container

Provides access to all records on
buletin board
[JSON/HTTP]

Extensions
◦ Proof of Participation: A bulletin board issues blind signatures on voters’ blinded identifiers

included in the vote and are returned along with a receipt (assymetrically encrypted for

unlinkability with a distinct key for each receipt), which voters devices unblind and can

show to authority as proof of participation. After the moratorium, the signature is

published on the bulletin board along with votes to avoid discrimination.

To ensure authenticity, each pseudonym receives only one unique signature. The client

device maintains a consistent, secretly and randomly generated blinding factor for all

votes. As an added benefit, a bulletin board can detect private key leaks, and an

invalid returned signature alerts the voter to a private key breach, promoting

accountability by discouraging the use of leak-prone devices or practices.

◦ Selection Asymmetric Encryption: To maintain the imparity of auditors/proxies with

respect to the votes they receive and prevent coercers/bribers from seeing what vote

they receive until the moratorium ends, the ballot selections for votes can be

asymmetrically encrypted. Then, a proof of correct decryption is published on the

bulletin board to ensure integrity. This also enables coerced vote tagging with a decoy

PIN code when a coercer/briber is observing a voter in person.

◦ Ballot Sharding: The shards of the ballot are specified, and a lottery for them is set after

the proposal is published on the bulletin board. When a verifiably random salt is

generated with a service like DRAND, the member pseudonyms are hashed with this salt

and sorted to which the shards are allocated in order. This prevents a small minority from

conspiring and allocating important questions to themselves.

References
[1] See peacefounder.org for roadmap, GitHub project, code and documentation, 2023.

[2] Janis Erdmanis. Zero knowledge proofs of shuffle with ShuffleProofs.jl. Presentation at the annual JuliaCon conference, 2022.

Source code available on github.com/PeaceFounder/ShuffleProofs.jl.

[3] Rolf Haenni and Oliver Spycher. Secure internet voting on limited devices with anonymized DSA public keys. In Proceedings of the

2011 Conference on Electronic Voting Technology/Workshop on Trustworthy Elections, USA, 2011. USENIX Association.

[4] Björn Terelius and Douglas Wikström. Proofs of Restricted Shuffles. In Progress in Cryptology – AFRICACRYPT 2010, Lecture Notes in

Computer Science, Berlin, Heidelberg, 2010. Springer.

[5] Rolf Haenni, Philipp Locher, Reto Koenig, and Eric Dubuis. Pseudo-Code Algorithms for Verifiable Re-encryption Mix-Nets. In

Financial Cryptography and Data Security, volume 10323. Springer International Publishing, Cham, 2017.

[6] Scott A. Crosby and Dan S. Wallach. Efficient data structures for tamper-evident logging. In Proceedings of the 18th Conference

on USENIX Security Symposium, SSYM’09, USA, 2009. USENIX Association.

janiserdmanis.org EVoteID 2023, Luxemburg janiserdmanis@protonmail.ch

peacefounder.org
github.com/PeaceFounder/ShuffleProofs.jl
https://www.janiserdmanis.org
mailto:janiserdmanis@protonmail.ch

