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Feedback loops are notoriously hard to reason about and debug when parallelism is 
introduced. In this poster, I will show a use case of the TaskMaster for using it to do 

adaptive and parallel sampling to make your plots faster with constrained resources.



An idea worth exploring
Background: curreently I am doing a PhD in 
theorethical condensed matter physics (topological 
effects in multiterminal superconducting 
junctions). Started using Julia since `v0.3.3` for my 
Msc project to get interactivity of Python and 
speed of C. Quicly got hooked up in reading cool 
developments on Discourse and later also on Slack. 

Can Julia do better than Python?  It is a common 
practice that a good craaftsman will make good 
stuff  with bad tool. I do not agree with such 
sentiment and  observed multtiple debates 
whether tomatous are vegetables or fruits (OOP 
talk). But the idea was cool and thus started to 
think how to make Julia API for Python adaptive 
package my collegues were making. 

Exploring how to solve this problem in Julia was 
intereseting because:

+ A very natural paralelism abstractions. 
+ Channel makes for easy piping
+ Type system and mutliplt dispatch <B
+ Perfomrnace. If you hacve contrained reesource 
better make susre that f(x) runs as fast as possible. 

Motivation: Often when we face an 
embarrassingly parallelizable problem which runs 
a long time, we reach out for a simple `pmap` 
command, and if we are lucky, we can run that on 
the cluster with many cores. However, often it is 
the case when we want to run our figure faster 
with resources which are in front of us. 

Another approach is to speed up the calculation 
by chhosing the grid on which the function is 
sampled, but that is not alwasy convininet. 
Instead the grid itslef can adapt as knowldge of 
evaluated points of the function comes in. Which 
thus forms a feedback loop.

When  paralelism to feedback loop is introduced  
it produces races and thus for optimal use of 
resources the result of it is stockhastic making 
debuggin notoriosuly dificult. Additionally the 
learning strategies can be executed on different 
kind of paralizable hardware (CPU, GPU, Cluster 
jobs, etc.).  This is where `TaskMaster ` package 
comes to save us from misery.



First let’s abstract a learning strategy
When execution is sequential one can write full execution as a single while 
loop:

while !(learner.loss() < step)
        xi = ask!(learner,true)
        yi = f(xi) 
        tell!(learner,(xi,yi))
End

where step is just a convergance parameter specific to a particular learner. 

Paralelism on the other hand is harder due to race conditions. For simplicity 
let’s assume that we have a process which takes values from tasks Channel 
and evaluates puts results in a form (xi,f(xi)) in the results Channel. Then the 
evaluation can be written as simple as:

unresolved = 0 
while true

    if !(learner.loss() < step)

        xi = ask!(learner,true)
        put!(tasks,xi)
        unresolved += 1

        if unresolved < N
            continue
        end
    end

    if unresolved == 0
        break
    end

    yi = take!(results)
    tell!(learner,yi)
    unresolved -= 1
    
end

The TaskMaster itself  does not  implement any 
learners (appart from making tests). To use 
TaskMaster one subtypes `AbtractLearner` and adds 
`ask!` and `tell!` methods which are expected to be 
determinsitic. 

using Adaptive
learner = AdaptiveLearner1D((0,1))

Which define interval (0,1) at whihch the function is 
going to be sampled. 

Now the learner can be used to `ask!` points. 

xi =  ask!(learner, si)

Where `si` contains an external data passed to the 
learner, for example, some random number. For 
Adaptive.jl package one just passes value si=true. 

The next step is to evaluate the function and feed it 
back to the learner

yi = f(xi)
tell!(learner, yi)

 



TaskMaster
Here `WorkMaster` sets up processes for evaluteing 
`f(x)` from input to output Channel. `Loop` defines what 
is to be evaluated with which learner and `evaluate!` is 
actually running the loop until specified convergence 
condition. 

Debugging Learner?

Let's imagine a situation where you had spent hours 
evaluating the function with a Learner. For some 
particular reason looking at the output, the Learner 
seems had misbehaved. The question then is how one 
could debug that?

Through replaying the master as long as learner is 
deterministic*:

hmaster = HistoryMaster(output,length(master.slaves)) 
hlearner = AdaptiveLearner2D([(-3,+3),(-3,+3)])
hloop = Loop(hmaster,hlearner,loop->println("Learner state $
(hloop.hlearner.state)"))
evaluate!(hloop,learner->learner.loss()<0.05)

Thus one can understand the learner by knowing what 
state caused the problems.

* Adaptive learners uses random numbers and thus the replay would not work. It 
would be possible if random number or it’s seed would be passed with `ask!` 
method.

The idea of TaskMaster is that writing of that while loop accuratelly 
counting `unresolved` tasks can be a little challenging for every time 
one would like to make a figure. Additionally to use the loop one 
needs to set up evaluation Task between tasks and results Channel. 

using Adaptive
using TaskMaste

@everywhere f(p) = exp(-p[1]^2 - p[2]^2)

master = WorkMaster(f)
learner2d = AdaptiveLearner2D([(-3,+3),(-3,+3)])
loop = Loop(master,learner2d)
output = evaluate!(loop,learner->learner.loss()<0.05)



Conclusions and References

Thank You

Conclusions:

- Abstractions Julia offers by default almost 
paralele executor part redundant (TaskMaster) in 
contrast to Python (Runner module). 
- The costs of using Adaptive pacakge is quite 
heavy when all python dependencies gets 
installed. Also it is in active development thus the 
code just might break after a while.
- I showed how deterministic learners can be 
replayed for debugging their state.  
- Using `pmap` is easier as output of it can be 
plotted and saved with less steps. 
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