Zero knowledge proofs of shuffle with
ShuffleProofs.jl

> —

X/
CX\ 4
AR

2O

jr===n

SO
XX

A
A
L/

PN) [

Dr. Janis Erdmanis (GitHub: JanisErdmanis, Twitter: graphitewriter, janiserdmanis.org)

2N,

Usual cryptography => we can trust the
other end to do the right thing

Remote electronic voting => How to combine
privacy and accountability? (“evoting problem”)

LT A
_.-'--.."—':'--'

i 0

E-voting: ironically it is hard because of efficiency

Privacy Accountability

c
2
a

=

g

c

b

o

n

o

@

c

]
i
5

=]
o

—>
<—

PROVER VERIFIER

Vlerificatum

* in noninteractive setting verifier is a “hash function”
to which prover feeds responses and receives challenges

Java is a verbose language and did not appeal for me.
Porting to Julia seemed like a good idea:

l l l |
4
'.f/
N) ?5‘:)
B R N L Y &
W Modularity RIIBIEE

compatibility

However, a major downside of Julia is the lack of libraries in
public key cryptography

Example

using CryptoGroups Ability for type parameters to hold values
G = PGroup(23, 11) 0 0 o
g = 6(3) . was essential in making a lean API.

1) p e R i ke L
println(“g7$i = $(g71)") Implements:
* Elliptic curves over prime and binary fields
* Modular prime groups
* Relevant utility functions (point compression
and basis selection)
* Common cryptographic constants

end

Tailored for implementation of
cryptographic schemes and protocols

Eneryption & Decryption Receiver generates a secret random

D)| e SW number sk (his private key) and
@W ?' publishes a public key:

Sender (a, b) Receiver pk. Y gSk

Sender: chooses a message m, and encrypts
it with a randomization factor r:

(a,b) < (g",m = pk")

Receiver: uses his private key sk
to decrypt tuple (a, b):

b/a’* = m

Encryption & Decryption

o = R
‘m 0 ”Decrvp‘tion E
y . (CI,7 b) L (grjm *pkr)

Sender (a, b) Receiver

Middleman: chooses a randomization factor r' and reencrypts tuple (a, b):
(a’,b") < (axg"",b*pk™)

Receiver: uses his private key sk
to decrypt tuple (a, b):
/) 1Sk
Only receiver can tell that (a, b) b /a = m
and (a’, b’) holds the same message!

Setup: ma and mg votes for candidates A and B. Public key pk.

* VOTE % -
o
-
S
T,
D -~ = -
(0)¢]
Voters Mix Decryptor
A: m=7
B:m=5 Input Output
Vi (g™, maxpk™) (a, b) (@', b) m
Vi (3,7) (13, 11) 7
5 T2 r2
Vot (g™, ma * pk™) Ve o (9, 3) (14, 13) 5
Vi : (g™, mp * pk™) Vs (8, 13)) 7

Why should we trust election result when Mix and Decryptor can do whatever they want?

using CryptoGroups
using ShuffleProofs

PGroup(23, 11)

= G(3)
sk = 7
pk = g”sk
m A = G(5)
m B = G(7)
enc = Enc(pk, g)

ciphertexts = [enc(m_A, 2), enc(m_A, 3), enc(m_B,
5)1

proposition, secret = shuffle(ciphertexts, enc)

verify(proposition, secret) == true

The proposition type

struct ElGamal{G <: Group} <: AbstractVector{G}
a::Vector{G}
b::Vector{G}

end

struct Shuffle{G <: Group} <: Proposition
g::G
pk::G
e::ElGamal{G}
e'::ElGamal{G}
end

Proposition holds all inputs and outputs of the mix

Honesty of the mix can be verified with secret
randomization factors, but that violates privacy

Proof of shuffle

verifier = ProtocolSpec(; g) See docs to choose verifier parameters with care
proof = prove(proposition, secret, verifier)

Proof can be published for on a bulletin board

verify(proposition, proof, verifier) == true . . .
without any compromises on privacy

Type of proof

ApprGC|ate and deSpalr struct VShuffleProof{G<:Group} <: Proof
M::Vector{G}
T::Tuple{Vector{G}, G, Vector{G}, G, G, Tuple{G, G}}
o::Tuple{BigInt, Vector{BigInt}, BigInt, BigInt, Vector{BigInt}, BigInt}
end

Shuffling with verifier

For convenience a verifier can be passed directly to shuffle returning oty Prgt?]gilfpécig 9 .
. e simutator = snhnu el Clphereexts, €ene, “Veriilier
simulator object which contains proposition, proof and verifier ’

verify(simulator) == true

The current state:

* Much leaner APl and more accessible for tinkering

« Easy get it running for any machine

* Poor performance and security in comparison with Verificatum, lacks
features.

Verification of Verificatum generated proof of shuffle

Verificatum generated PoS can be
verified with ShuffleProofs:

using ShuffleProofs
simulator = load verificatum simulator(DEMO DIR)
verify(simulator)

In the future:

* Implement Verificatum compatible proof of decryption

* Add a command line interface

* Improve performance and add docs for CryptoGroups
 Interface existing cryptographic libraries with CryptoGroups API

Go to peacefounder.org and check out PeaceFounder Github organization to learn
more

The end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

