
Dr. Janis Erdmanis GitHub: JanisErdmanis, janiserdmanis.org

AppBundler.jl
Bundle your Julia GUI Application

Why Bundling?
Advantages over web application

• Performance (CPU optimal code, GPU, Cluster, local resources)

• Hardware Interfacing (drivers, systems, measurement apparatus)

• Offline functionality

• Security and Privacy (Secrets and sensitive data do not leave the device)

• Ergonomics (Opportunity using Julia, QML over web technologies)

Challenges
In deploying local apps

• Development Complexity

Does the app work the same on Linux, MacOS and Windows? Maintaining separate package formats
and build infrastructure for each OS

• Distribution and Deployment

Obtaining and maintaining signing certificates, navigating different marketplace submissions and review
processes

• User Adoption Barriers

Installation is required and can leave traces in the system when uninstalled. Does the software contain
malware?

• Maintenance

Addressing OS-specific bugs and issues; Version fragmentation among users

Solutions
To deployment complexity

• Julia Artifacts system with BinaryBuilder

• Distribute over well-established formats that offer application-level
sandboxing and remove local storage after removal

• Use AppBundler to vendor package dependencies and artifacts and provide
post-processing scripts and steps

• Use GitHub Actions or other CI integration pipelines to finalise created
bundles. Alternatively, send the bundles over SSH to self-hosted systems for
finalisation.

Compilation
PkgImages or SysImages?

• GUI frameworks have a long TTFX

• Since Julia 1.9 pkgimages are cached, and with Julia 1.11 are relocatable

• SysImages offers instant startup time; PkgImages can take a second to load

• PkgImages are more tested, and the compilation process is more transparent
and faster

• Neither method currently offers cross-compilation support; it must be
combined with finalising the bundles on the host systems

Let’s make bundles

MacOS Bundle Finalization
What’s in make-dmg script

• Precompilation:

• Launcher formation:

• Codesigning:

• Formation of DMG with a neat installer:

MyApp/Contents/MacOS/precompile

gcc -arch arm64 -o "Contents/MacOS/MyApp" "Contents/Resources/launcher.c"

codesign --entitlements "MyApp.app/Contents/Resources/Entitlements.plist"
--force --sign "JanisErdmanis" --deep "MyApp.app"

dmgbuild -s "MyApp.app/Contents/Resources/dmg_settings.py"
-D app="MyApp.app" "MyApp Installer" "MyApp.dmg"

Snap bundles
Finalization & Installation

• Snap bundles bundles can be installed with:

• Configure hook runs precompilation after installation

• Alternativelly precompilation can be done:

 unsquashfs myapp.snap

 squashfs-root/bin/precompile

 mksquashfs squashfs-root myapp-comp.snap -noappend -comp xz

snap install -classic -dangerous myapp.snap

Windows MSIX
make-msix

• Precompiling with MyApp/precompile.ps1

• Changing subsystem with editbin for lld.exe and julia.exe

editbin /SUBSYSTEM:WINDOWS "MyApp\julia\bin\julia.exe"

• Forming an archive

• Signing the result

signtool sign /fd SHA256 /a /f "SigningKey.pfx" "MyApp.msix"

makeappx pack /d "MyApp" /p "MyApp.msix"

Tips

• Use PrecompileTools to precompile the startup of the application

• RelocatableFolders can be useful for QML files

• Use Add-AppPackage -register .\MyApp\AppxManifest.xml for

debugging Windows bundles

• Use snap try MyApp and snap run --shell MyApp to debug snap

bundles

Customization
The Recipe System

• Every recipe is made of list of rules executed sequentually

• A rule specifies files that need to be moved from origin to destantion

• If a destination already contains a file written by previous rule it is

skipped

• If a recipe path exists in app folder it overrides the default from

AppBundler/recipes

Recipe System Demo

Sandboxing
User Data

• User data is set to USER_DATA environment variable

• MacOS: ~/.config/{{APP_NAME}}

• Linux: ~/snap/{{APP_NAME}}/common

• Windows: ~\AppData\Local\Packages\{{APP_ID}}\LocalState

• Additionally a $USER_DATA/cache is set as DEPOT_PATH first entry

~/Library/Containers/{{APP_ID}}/Data

Future Work
Sandboxing

• Application marketplaces expect applications to use the least
number of system resources for favourable reviews.

• Currently, none of the recipes works:

• MacOS: application loads but is unresponsive to input;

• Linux: OpenGL does not work with QML and Gtk but works with

GLFW;

• Windows: Julia does not load; some progress had been made

recently issue #52007;

https://github.com/JuliaLang/julia/issues/52007

Future Work
Some other things

• Writing a GitHub action that automatically bundles applications when
a new app version is tagged;

• Making a flatpack recipe;

• Adding a PackageCompiler support for postprocessing the

application bundles.

The End

