A

¥ ¢ AppBundler.)l

AppBundier.)l

Bundle your Julia GUI Application

Dr. Janis Erdmanis GitHub: JanisErdmanis, janiserdmanis.org

Aspirational Deployment

import Pkg; Pkg.instantiate()
include("main.j1")

Why Bundling?

Advantages over web application

 Performance (CPU optimal code, GPU, Cluster, local resources)
 Hardware Interfacing (drivers, systems, measurement apparatus)

» Offline functionality

» Security and Privacy (Secrets and sensitive data do not leave the device)

 Ergonomics (Opportunity using Julia, QML over web technologies)

Challenges

In deploying local apps

* Development Complexity

Does the app work the same on Linux, MacOS and Windows? Maintaining separate package formats
and build infrastructure for each OS

» Distribution and Deployment

Obtaining and maintaining signing certificates, navigating different marketplace submissions and review
processes

 User Adoption Barriers

Installation is required and can leave traces in the system when uninstalled. Does the software contain
malware?

e Maintenance

Addressing OS-specific bugs and issues; Version fragmentation among users

Solutions

To deployment complexity

» Julia Artifacts system with BinaryBuilder

e Distribute over well-established formats that offer application-level
sandboxing and remove local storage after removal

 Use AppBundler to vendor package dependencies and artifacts and provide
post-processing scripts and steps

» Use GitHub Actions or other Cl integration pipelines to finalise created
bundles. Alternatively, send the bundles over SSH to self-hosted systems for
finalisation.

Compilation

Pkglmages or Sysimages?

 GUI frameworks have a long TTFX
e Since Julia 1.9 pkgimages are cached, and with Julia 1.11 are relocatable
o Syslmages offers instant startup time; Pkglmages can take a second to load

 Pkglmages are more tested, and the compilation process is more transparent
and faster

* Neither method currently offers cross-compilation support; it must be
combined with finalising the bundles on the host systems

L et’s make bundles

MacOS Bundle Finalization

What’s iIn make-dmg script

* Precompilation:

MyApp/Contents/MacOS/precompile
e | auncher formation:

gcc -arch arm64 -o "Contents/MacOS/MyApp" "Contents/Resources/launcher.c”
* Codesigning:
codesign --entitlements "MyApp.app/Contents/Resources/Entitlements.plist”

--force --sign "JaniskErdmanis” --deep "MyApp.app"
* Formation of DMG with a neat installer:

dmgbuild -s "MyApp.app/Contents/Resources/dmg_settings.py"
-D app="MyApp.app" "MyApp Installer" "MyApp.dmg"

Snap bundles

Finalization & Installation

* Snap bundles bundles can be installed with:

snap install -classic -dangerous myapp.snap

* Configure hook runs precompilation after installation

* Alternativelly precompilation can be done;
unsgquashfs myapp.shap
squashfs-root/bin/precompile

mksquashfs squashfs-root myapp-comp.snap -noappend -comp Xz

Windows MSIX

make-msix

* Precompiling with MyApp/precompile.psT
* Changing subsystem with editbin for lld.exe and julia.exe
editbin /SUBSYSTEM:WINDOWS "MyApp\julia\bin\julia.exe"
* Forming an archive
makeappx pack /d "MyApp" /p "MyApp.msix"
* Signing the result
signtool sign /fd SHA256 /a /f "SigningKey.pfx" "MyApp.msix"

Tips

* Use Precompilelools to precompile the startup of the application
* RelocatableFolders can be useful for QML files

* Use Add-AppPackage -register \MyApp\AppxManifest.xml for
debugging Windows bundles

* Use snap try MyApp and snap run --shell MyApp to debug snhap
bundles

Customization
The Recipe System

* Every recipe is made of list of rules executed sequentually
* A rule specifies files that need to be moved from origin to destantion

* |f a destination already contains a file written by previous rule it is
skipped

* |f a recipe path exists in app folder it overrides the default from
AppBundler/recipes

Recipe System Demo

Sandboxing

User Data

* User data is set to USER_DATA environment variable
* MacOsS: ~/.config/{{APP_NAME}} ~/Library/Containers/{{APP_ID}}/Data
e Linux: ~/snap/{{APP_NAME}}/common
 Windows: ~\AppData\Local\Packages\{{APP_ID}}\LocalState
« Additionally a $USER_DATA/cache is set as DEPOT_PATH first entry

Future Work
Sandboxing

* Application marketplaces expect applications to use the least
number of system resources for favourable reviews.

* Currently, none of the recipes works:
 MacOS: application loads but is unresponsive to input;

* Linux: OpenGL does not work with QML and Gtk but works with
GLFW;

* Windows: Julia does not load; some progress had been made
recently iIssue #52007;

https://github.com/JuliaLang/julia/issues/52007

Future Work

Some other things

* Writing a GitHub action that automatically bundles applications when
a new app version is tagged;

* Making a flatpack recipe;

* Adding a PackageCompiler support for postprocessing the
application bundles.

The End

