
Dr. Janis Erdmanis GitHub: JanisErdmanis, janiserdmanis.org

PeaceFounder
Unveiling Full Stack Development

EVoting
Attack vectors

• Surveillance

• Fear of expressing voters’ true choices

• Coercion/Bribery

• Deception

• Presenting secretly manipulated election outcomes as the result

• Adversary convinces the public that the result can’t be trusted

• Malware on the device lies to voters how the vote is cast

• Sabotage

• Election result unannounced

• Casting a vote is not possible due to a DDOS attack or due to corrupt authority

EVoting
Desirable properties

• Surveilance

• Anonimity

• Receipt freeness

• Deception

• E2E verifiability (individual and universal verifiability)

• Eligibility verifiability

• Sabotage

• Robustness

• Availability

: Setup mA and mB . .encodes choice for candidate A or B Public key pk

Mix Cascade

(a, b)
V1 (9, 16)
V2 (4, 9)
V3 (13, 12)

(a’, b’)
(4, 9)

(8, 16)
(16, 3)

Input Output

Counting

Decryption Ceremony

m
4
9
4

Encrypted Votes

Typical E2E-V EVoting

Decrypted Tally:

Deployment Complexity
Threshold Decryption Ceremony

• To ensuring vote privacy, the key must be
distributed between multiple independent
parties;

• In a large threshold, a corrupt minority could
sabotage the description of the election
result;

• A low threshold low risks corrupt minority to
reconstruct the key and see how each voter
had voted;

• Dishonest parties can be identified, but it
may also be incompetence;

• Hence, privacy and robustness are in tension
and ensuring their security is costly

©2009 by Stefan Dziembowski

Secure deployment of existing E2E
verifiable voting systems is unfeasible for

small and medium sized communities

PeaceFounder
DSA Signatures

Let’s consider g to be a group element of a cryptographic group

If there is no way to link signatures issued as

Unless is known to the verifier. Alternatively, zero-knowledge proof of a
statement or is provided.

h ← gs

s
logg(X) = logh(Y) logg(h) = logX(Y)

sigg ← 𝗌𝗂𝗀𝗇(m, g, sk)

sigh ← 𝗌𝗂𝗀𝗇(m′ , h, sk)

X ← gsk

Y ← hsk

PeaceFounder
Braiding

• Exponentiation mix of Haenni &
Spycher's proposed construction

• In it, a braider picks a secret
factor that exponentiates all input
public keys and shuffles them

• Robust zero knowledge ensures
the integrity of the braid

Votes signed with relative generator h thus are both anonymous and
eligible

PeaceFounder
HistoryTrees.jl

• An extension to Merkle trees with an unbalanced number of entries

• Used for transparency logs to detect malicious certificate authority

• Inclusion proofs are hash chain proofs which link tree roots to the record

• Consistency proofs prove that the current bulletin board commit retains all
records from the previous commit

Random queries by thin-voting clients can ensure bulletin board
immutability without replication.

PeaceFounder
Buletin Board Structure

• PeaceFounder is designed around asynchronicity,
the unavailability of braiding resources, and
hence long-lived instances (demes).

• The bulletin board is split into BraidChain and
BallotBox ledgers;

• For a BraidChain record to be included, it needs
to be verified and consistent with the current
ledger state;

• A proposal record contains an anchor to the
BraidChain ledger’s state, which sets a relative
generator;

• A BallotBox ledger is initialised with a proposal
and corresponding members’ pseudonym set,
which is set by the anchor index in the proposal.

PeaceFounder
Voting

• Every vote signed by a valid pseudonym and associated
with a valid proposal hash gets recorded in the
BallotBox ledger, even if it is superseded or malformed.

• Upon vote recording, a receipt containing an inclusion
proof is returned; if the same vote is already recorded, a
receipt for it is returned instead.

• A voter keeps a consistency-proof chain and conducts
incremental follow-up queries until votes are finalised.
This ensures their vote’s inclusion as well as votes made
by others.

• The BallotBox ledger publicly displays vote hashes for
integrity while concealing actual votes for fairness. This
can be extended as a coercion/bribery resistance
measure as the system is receipt-free during this period.

• A timestamp ensures that malware cannot show a
receipt linked to someone else’s vote. Meanwhile, a cast
index helps locate the specific vote on the ledger.

https://eprint.iacr.org/2024/1040

PeaceFounder Demo
http://peacefounder.camdvr.org

Stack Overview
Backend, Admin Panel and Client

• 15k lines of Julia code and 3k lines of QML, some
ChatGPT-generated Javascript and CSS tricks

• The backend is built as a modular monolith

• The admin panel is layered on top of the backend
and defines a separate service

C
ry

pt
oS

ig
na

tu
re

s

Sh
uffl

eP
ro

of
s

H
is

to
ry

Tr
ee

s

CryptoGroups, Nettle, HTTP, Oxygen, Tar,
Dates, Base64, StructTypes, JSON3

Model, Parser, Store

Mapper

Controllers, AuditTools, Client

Service

Admin Panel

QML Client
App

Module src test
PeaceFounder 5574 867
CryptoGroups 1989 596
ShuffleProofs 1236 578

CryptoSignatures 153 122
HistoryTrees 300 234

PeaceFounderAdmin 1286 31
PeaceFounderClient 417 246

Generated via PackageAnalyzer

Why Julia
What have made it great for the project

• Memory safety and garbage collector allow to focus on the problem;

• Sensible and rich hierarchical type system with zero cost abstractions;

• Multiple dispatch. isbinding(x, y[, hasher]) has 37 methods!

• As a developer I can use dependencies with binaries without ever having to compile
anything on my machine or know anything about the zoo of build systems;

• Manifest.toml reproduces the same environment among all platforms;

• Modules, macros and globals surpass class singletons with ubiquitous self;

• Interactive workflow with Revise, Infiltrator and root projects with local dev

Short Feedback Loops
Test Driven Development

• The PeaceFounder backend is built in a layered form, separating the Model,
Mapper and Service layers and includes a separate Client backend;

• There is an integration test for each layer that allows one to spot errors at the
lowest abstraction level and not any level deeper;

• The service layer is tested directly with the Router, which is passed to the
client, allowing it to follow the whole stack trace;

• Time is mockable, so tests do not need to wait for events or fail because
precompilation has taken too long.

• Revise and Infiltrator help tremendously with the global state.

Short Feedback Loops
How I use Revise with HTTP

The very next HTTP request reflects the new codebase, making debugging the
Admin panel a breeze.

Short Feedback Loops
How I use Revise with QML

See the changes from the backend in the UI immediately without restarts.

Issues with Julia
Some nuances I wish were addressed

• Null safety. It is burdensome for the program to compile and run where, at
some point, nothing could happen unchecked at runtime;

• Modular numbers Mods. It is natural to put modulus as a type parameter and
write function signatures for its equality. But it shouldn’t be compiled. Also
BigInt;

• Reusing client backend code for mobile would be fantastic;

• Explicit mutability at the call site (Rust, Swift, Kotlin, Mojo);

• Ability to shadow getindex at a module level so some crypto code could be
reimplemented from specs in verbatim.

The End

